Synthesis of vanadyl acetylacetonate – Protocol R

$$CO(NH_2)_2 + H_2O \rightarrow 2NH_3 + CO_2$$

 $VO(SO_4) + 2(Hacac) + 2NH_3 \rightarrow [VO(acac)_2] + (NH_4)_2SO_4$

Reaction. Mix a solution of 0.01 mol of vanadyl sulphate in water and 6 g (0.058 mol) of acetylacetone (about 190% excess), followed by 20 g (0.333 mol) of urea (about 3230% excess). Cover the reaction mixture with a watch glass and heat overnight on a steam bath. As the urea hydrolyses to release ammonia, the complex separates out.

Isolation. Wash the crystals with water and dry in air.

Purification. Recrystallize the solid from chloroform.

Safety. See hazards associated with the reagents in Table 1.

Greenness Assessment. The evaluation was performed using the Green Star (GS) and the results are shown in Figure 1.

Figure 1. Greenness assessment (GS) for the synthesis of vanadyl acetylacetonate

Construction of the GS

$$CO(NH_{2})_{2} + H_{2}O \rightarrow 2NH_{3} + CO_{2}$$

 $VO(SO_{4}) + 2(Hacac) + 2NH_{3} \rightarrow [VO(acac)_{2}] + (NH_{4})_{2}SO_{4}$

Table 1 presents the hazards and scores associated with the substances involved and Table 2 presents the scores used to construct the green stars.

Table 1. Hazards for the synthesis of vanadyl acetylacetonate, protocol R^{α}

Substances involved	Step			Hazard code	Score: hazards to		
Substances involved	R I P		Pu	Tiazai d code	НН	E	P
Stoichiometric reagents							
Acetylacetone ^c (CAS 123-54-6)	✓			H226, H302	2	1	2
Urea (CAS 57-13-6)	✓			-	1	1	1
Vanadium pentoxide (CAS 1314-62-1)	✓			H302, H332, H335, H341, H361, H372, H411	3	3	1
Auxiliary substances							
Solvents							
Chloroform (CAS 67-66-3)			✓	H302, H315, H351, H373	3	1	1
Water ^{a,b}	✓	✓		-	1	1	1
Product							
Vanadyl acetylacetonate (3153-26-2)	✓	✓	✓	H302, H315, H319, H335	2	1	1
Waste							
Acetylacetone ^c (excess)		✓		H226, H302	2	1	2
Ammonia (excess, solution)		✓		H315, H318, H400	3	3	1
Ammonium sulphate (aqueous solution)		✓		-	1	1	1
Carbon dioxide	✓			H280	1	1	2
Chloroform			✓	H302, H315, H351, H373	3	1	1
Water ^{a,b}		✓		-	1	1	1

α R – Reaction; I – Isolation; Pu – Purification; HH – Human Health; E – Environment; P – Physical

^a Renewable; ^b Degradable to innocuous products; ^c Degradable

Table 2. Scores used to construct the green star for the synthesis of vanadyl acetylacetonate, protocol R^{α}

Green Chemistry	Reaction		Stai	Isolation	Purification		Global		
Principle		Explanation		s Explanation		s Explanation		s Explanation	
P1 Prevention	3	Carbon dioxide	1	Excess of ammonia, H318, H400	1	Chloroform, H351, H373	1	Excess of ammonia, H318, H400, chloroform, H351, H373	
P2 Atom Economy	1	Excess of reagents > 10%, formation of by-products		NA		NA	1	formation of by- products	
P3 Less hazardous chemical synthesis	1	Vanadium pentoxide, H341, H361, H372, H411, and excess of ammonia, H318, H400		NA		NA	1	Vanadium pentoxide, H341, H361, H372, H411, and excess of ammonia, H318, H400, chloroform, H351, H373	
P5 Safer solvents and auxiliary substances	3	Water	3	Water	1	Chloroform, H351, H373	1	Chloroform, H351, H373	
P6 Increase energy efficiency	2	0 °C ≤ T ≤ 100 °C	3	Room temperature	3	Room temperature		$0 \text{ °C} \le T \le 100 \text{ °C}$	
P7 Use renewable feedstocks	1	Substances not renewable	1	Substances not renewable	1	Substances not renewable		Substances not renewable	
P8 Reduce derivatives	3	One stage		NA		NA	2	Two stages	
P9 Catalysts	3	Without catalysts		NA		NA	3	Without catalysts	
P10 Design for degradation	1	Substances not degradable	1	Substances not degradable	1	Substances not degradable	1	Substances not degradable	
P12 Safer chemistry for accident prevention	1	Vanadium pentoxide, H341, H361, H372, ammonia, H318	1	Ammonia, H318	1	Chloroform, H351, H373	1	Vanadium pentoxide, H341, H361, H372, ammonia, H318, chloroform, H351, H373	

 $^{^{\}alpha}$ s – Score; NA – Not applicable

References

Mahatma Gandhi University, http://ietd.inflibnet.ac.in/bitstream/10603/588/14/14_chapter9.pdf (accessed January 2012).