Synthesis of barium peroxide – Protocol B

 $BaCl_2 + H_2O_2 + 8H_2O \rightarrow BaO_2.8H_2O + 2HCl$

Reaction. Under a nitrogen atmosphere, add a solution of hydrogen peroxide (stoichiometric proportions) and a solution of ammonium hydroxide to an aqueous solution of barium chloride. Place the mixture in an ice bath to precipitate the product.

Isolation. Collect by filtration the barium peroxide precipitated and dry at 150 °C.

Purification. Not prescribed.

Safety. See hazards associated with the reagents in Table 1.

Greenness Assessment. The evaluation was performed using the Green Star (GS) and the results are shown in Figure 1.

Figure 1. Greenness assessment (GS) for the synthesis of barium peroxide

Construction of the GS

$BaCl_2 + H_2O_2 + 8H_2O \rightarrow BaO_2.8H_2O + 2HCl$

Table 1 presents the hazards and scores associated with the substances involved and Table 2 presents the scores used to construct the green stars.

Substances involved	Step			Hazard code	Score: hazards to		
	R	Ι	Pu		HH	Е	Р
Reagentes estequiométricos							
Barium chloride (CAS 10361-37-2)	✓			H301, H332	3	1	1
Hydrogen peroxide (CAS 7722-84-1)	✓			H302, H318	3	1	1
Auxiliary substances							
Solvents							
Ammonium hydroxide (solution)	✓			H290, H314, H335, H400	3	3	2
Water ^{a,b}	✓			-	1	1	1
Other auxiliary substances							
Nitrogen ^a (CAS 7727-37-9)	✓			H280	1	1	2
Product							
Barium peroxide (1304-29-6)	✓	\checkmark		H272 (cat. 2), H302, H332	2	1	3
Waste							
Ammonium hydroxide (dilute solution)		✓		H315, H318, H400	3	3	1
Hydrochloric acid (dilute solution)		✓		-	1	1	1
Nitrogen ^a	✓			H280	1	1	2
Water ^{a,b}		✓		-	1	1	1

Table 1. Hazards for the synthesis of barium peroxide, protocol B^{α}

 α R – Reaction; I – Isolation; Pu – Purification; HH – Human Health; E – Environment; P – Physical

^a Renewable; ^b Degradable to innocuous products

Green Chemistry Principle		Reaction		Isolation		Global		
		Explanation		Explanation	s	Explanation		
P1 Prevention	3	Nitrogen		Dilute ammonium hydroxide, H318 and H400	1	Dilute ammonium 1 hydroxide, H318 and H400		
P2 Atom Economy	2	Stoichiometric proportions of reagents, formation of by-products		NA	2	2 Stoichiometric 2 proportions of reagents, formation of by-products		
P3 Less hazardous chemical synthesis	1	Barium chloride, H301, hydrogen peroxide, H318, and ammonium hydroxide, H314 and H400		NA	1	Barium chloride, H301, hydrogen peroxide, H318, and ammonium hydroxide, H314 and H400		
P5 Safer solvents and auxiliary substances	1	Ammonium hydroxide, H314 and H400		Solvents and auxiliary substances are not used	1	Ammonium 1 hydroxide, H314 and H400		
P6 Increase energy efficiency	2	$0 \text{ °C} \le T \le 100 \text{ °C}$		T > 100 °C	1	T > 100 °C		
P7 Use renewable feedstocks	2	Nitrogen is renewable		Substances not renewable	2	Nitrogen is renewable		
P8 Reduce derivatives	3	One stage		NA	3	One stage		
P9 Catalysts	3	Without catalysts		NA		Without catalysts		
P10 Design for degradation	1	Substances not degradable		Substances not degradable	s not ole 1 Substances not degradable			
P12 Safer chemistry for accident prevention	1	Barium chloride, H301, hydrogen peroxide, H318, ammonium hydroxide, H314, and barium peroxide, H272 (cat.2)		Barium peroxide, H272 (cat.2), and ammonium hydroxide, H314	1	Barium chloride, H301, hydrogen peroxide, H318, ammonium hydroxide, H314, and barium peroxide, H272 (cat.2)		

Table 2. Scores used to construct the green star for the synthesis of barium peroxide, protocol B^{α}

 $^{\alpha}s$ – Score; NA – Not applicable

References

Kopnin, E.M. *et al.* New Family of Au-Based Superconductors $AuBa_2Ca_{n-1}Cu_nO_{2n+3}$ (n = 3,4). *Chem. Mater.*, **2001**, *13*, 2905-2908.