Synthesis of barium peroxide – Protocol C

 $Ba + O_2 \rightarrow BaO_2$

Reaction. Wash the barium free from paraffin oil with light petroleum and dry on a filter paper. Weigh 1.5 - 2.0 g of the metal and divide this into three or more pieces. Place the pieces in nickel boats in the furnace tube. Connect the oxygen cylinder directly to the furnace tube. A Drechsel bottle containing concentrated sulphuric acid is included on the exit side of the furnace as a ready method of checking the gas flow rate. Heat the furnace tube to 500-550 °C in an oxygen flow of 4-6 cm³/s for about one hour.

Isolation. Cool the tube while maintaining the oxygen flow. Remove the product and break into smaller pieces with a pestle and mortar.

Purification. Not prescribed.

Safety. See hazards associated with the reagents in Table 1.

Greenness Assessment. The evaluation was performed using the Green Star (GS) and the results are shown in Figure 1.

Figure 1. Greenness assessment (GS) for the synthesis of barium peroxide

Construction of the GS

 $Ba + O_2 \rightarrow BaO_2$

Table 1 presents the hazards and scores associated with the substances involved and Table 2 presents the scores used to construct the green stars.

Table	1	Hazards	for th	ne sv	nthesis	of	harium	nerovide	protocol	C^{α}
rable	1.	nazalus	101 u	ie sy	nulesis	01	Darium	peroxide,	protocor	C

Substances involved	Step			Hazard code	Score: hazards to		
	R I Pu		Pu		HH	Е	Р
Stoichiometric reagents							
Barium (CAS 7440-39-3)	✓			H315, H319, H335	2	1	1
Oxygen ^a (CAS 7782-44-7)	✓			H270, H280	1	1	3
Auxiliary substances							
Solvents							
Petroleum ether (CAS 8032-32-4)	✓			H224, H304, H315, H336, H411	3	3	3
Other auxiliary substances							
Oxygen ^a (CAS 7782-44-7)	✓	✓		H270, H280	1	1	3
Sulphuric acid (CAS 7664-93-9)	✓			H314	3	1	1
Product							
Barium peroxide (1304-29-6)	✓	✓		H272 (cat. 2), H302, H332	2	1	3
Waste							
Petroleum ether	✓			H224, H304, H315, H336, H411	3	3	3
Sulphuric acid (solution)	✓			H314	3	1	1

 ${}^{\alpha}$ R – Reaction; I – Isolation; Pu – Purification; HH – Human Health; E – Environment; P – Physical ^a Renewable

Green Chemistry	Reaction			Isolation		Global		
Principle		Explanation		Explanation	s	Explanation		
P1 Prevention	1	Petroleum ether, H304 and H411, sulphuric acid, H314	3	Without waste	1	Petroleum ether, H304 and H411, sulphuric acid, H314		
P2 Atom Economy	3	Stoichiometric proportions of reagents, without formation of by- products		NA	3	Stoichiometric proportions of reagents, without formation of by- products		
P3 Less hazardous chemical synthesis	1	Petroleum ether, H304 and H411, sulphuric acid, H314		NA	1	Petroleum ether, H304 and H411, sulphuric acid, H314		
P5 Safer solvents and auxiliary substances	1	Petroleum ether, H304 and H411, sulphuric acid, H314	3	Oxygen	1	Petroleum ether, H304 and H411, sulphuric acid, H314		
P6 Increase energy efficiency	1	T > 100 °C	3	Room temperature	1	T > 100 °C		
P7 Use renewable feedstocks	2	Oxygen is renewable	1	Substances not renewable	2	Oxygen is renewable		
P8 Reduce derivatives	3	One stage		NA	3	One stage		
P9 Catalysts	3	Without catalysts		NA	3	Without catalysts		
P10 Design for degradation	1	Substances not degradable	1	Substances not degradable	1	Substances not degradable		
P12 Safer chemistry for accident prevention	1	Oxygen, H270, petroleum ether, H224, sulphuric acid, H314, and barium peroxide, H272 (cat.2)	1	Oxygen, H270, and barium peroxide, H272 (cat.2)	1	Oxygen, H270, petroleum ether, H224, sulphuric acid, H314, and barium peroxide, H272 (cat.2)		

Table 2. Scores used to construct the green star for the synthesis of barium peroxide, protocol C^{α}

 $\overline{\alpha}$ s – Score; NA – Not applicable

References

Pass, G.; Sutcliffe, H. Practical Inorganic Chemistry – 2nd edition. Chapman and Hall: London, 1974, pp. 34-35.