Synthesis of chromium(III) acetylacetonate – Protocol C

$$CO(NH2)2 + H2O \rightarrow 2NH3 + CO2$$

$$CrCl3 + 3(Hacac) + 3NH3 \rightarrow [Cr(acac)3] + 3NH4Cl$$

Reaction. Weigh into a 100 mL Erlenmeyer flask 1.4 g (5 mmol) of chromium(III) chloride hexahydrate and dissolve it in 50 mL distilled water. Weigh out 6 g urea and add it in 3 or 4 portions to the deep green chromium solution, stirring well after each addition. Then add 3.5 mL (34 mmol) of acetylacetone (about 127% excess) dropwise, using a pipette. Clamp the flask in a boiling water bath and heat the mixture while stirring for approximately 1 hour. The solution should initially be very dark and almost black in appearance, but as the reaction proceeds, deep maroon plate-like crystals form as a crust on the surface of the reaction mixture.

Isolation. Cool the reaction mixture and vacuum-filter the product. Do not wash the product, dry it in air.

Purification. Not prescribed.

Safety. See hazards associated with the reagents in Table 1.

Greenness Assessment. The evaluation was performed using the Green Star (GS) and the results are shown in Figure 1.

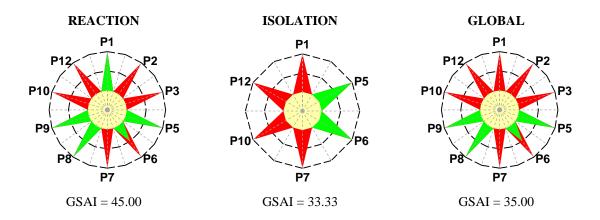


Figure 1. Greenness assessment (GS) for the synthesis of chromium(III) acetylacetonate

Construction of the GS

$$CO(NH2)2 + H2O \rightarrow 2NH3 + CO2$$

$$CrCl3 + 3(Hacac) + 3NH3 \rightarrow [Cr(acac)3] + 3NH4Cl$$

Table 1 presents the hazards and scores associated with the substances involved and Table 2 presents the scores used to construct the green stars.

Table 1. Hazards for the synthesis of chromium(III) acetylacetonate, protocol C^{α}

Substances involved		Step		Hazard code	Score: hazards to		
		I	Pu	Tiuzui a coac	НН	E	P
Stoichiometric reagents							
Acetylacetone ^c (CAS 123-54-6)	✓			H226, H302	2	1	2
Chromium(III) chloride hexahydrate (CAS 10060-12-5)				H302	2	1	1
Auxiliary substances							
Solvents							
Water ^{a,b}	✓			-	1	1	1
Other auxiliary substances							
Urea (CAS 57-13-6)	✓			-	1	1	1
Product							
Chromium(III) acetylacetonate (21679-31-2)	✓	✓		H315, H319, H335	2	1	1
Waste							
Acetylacetone (excess)		✓		H226, H302	2	1	2
Ammonium chloride (aqueous solution)		✓		-	1	1	1
Ammonium hydroxide (excess, solution)		✓		H315, H318, H400	3	3	1
Carbon dioxide	✓			H280	1	1	2
Water ^{a,b}		✓		-	1	1	1

 $^{^{\}alpha}\,R-Reaction;\,I-Isolation;\,Pu-Purification;\,HH-Human\,\,Health;\,E-Environment;\,P-Physical$

^a Renewable; ^b Degradable to innocuous products; ^c Degradable

 Table 2. Scores used to construct the green star for the synthesis of chromium(III)

acetylacetonate, protocol C^{α}

Green Chemistry	Reaction		Isolation			Global		
Principle		s Explanation		Explanation		Explanation		
P1 Prevention	3	Carbon dioxide	1	Excess of ammonium hydroxide, H318, H400	1	Excess of ammonium hydroxide, H318, H400		
P2 Atom Economy	1	Excess of acetylacetone and ammonium hydroxide > 10%, formation of by-products		NA	1	Excess of acetylacetone and ammonium hydroxide > 10%, formation of by-products		
P3 Less hazardous chemical synthesis	1	Excess of ammonium hydroxide, H318, H400		NA	1	Excess of ammonium hydroxide, H318, H400		
P5 Safer solvents and auxiliary substances	3	Solvents and auxiliary substances are innocuous	3	Solvents and auxiliary substances are not used	3	Solvents and auxiliary substances are innocuous		
P6 Increase energy efficiency	2	0 °C ≤ T ≤ 100 °C	3	Room temperature	2	0 °C ≤ T ≤ 100 °C		
P7 Use renewable feedstocks	1	Substances not renewable	1	Substances not renewable	1	Substances not renewable		
P8 Reduce derivatives	3	One stage		NA	3	One stage		
P9 Catalysts	3	Without catalysts		NA	3	Without catalysts		
P10 Design for degradation	1	Substances not degradable	1	Substances not degradable	1	Substances not degradable		
P12 Safer chemistry for accident prevention	1	Excess of ammonium hydroxide, H318	1	Excess of ammonium hydroxide, H318	1	Excess of ammonium hydroxide, H318		

 $^{^{\}alpha}s$ – Score; NA – Not applicable

References

Glidewell, C.; "Metal Acetylacetonate Complexes: Preparation and Characterization" in Woollins, J., Ed.; *Inorganic Experiments*, 2nd ed., Wiley-VCH, Weinheim, 2003; Exp. 3.16.