REALIZAÇÃO EXPERIMENTAL

Objectivo

Reconhecer que existem reacções químicas incompletas, reversíveis, ou seja, que podem ocorrer nos dois sentidos da reacção (o directo e o inverso).

Duração

Tempo de realização 45 minutos.

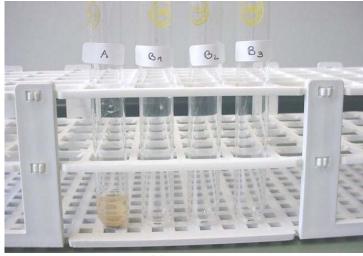
Material e Reagentes

- Cinco gobelés de 50 mL
- Quatro tubos de ensaio
- Suporte para tubos de ensaio
- Cinco conta-gotas
- Pipeta de transferência
- Etiquetas
- Solução aquosa 0,10 moldm⁻³ de nitrato de prata
- Solução aquosa 0,10 moldm⁻³ de sulfato de ferro
 (II)
- Solução aquosa 0,10 moldm⁻³ de tiocianato de potássio (solução identificadora de iões Fe³⁺)
- Solução aquosa 0,10 moldm⁻³de hexacianoferrato
 (III) de potássio (solução identificadora de iões Fe²⁺)
- Solução aquosa 1,0 moldm⁻³ de cloreto de potássio (solução identificadora de iões Ag⁺)

Material.

Reagentes: Solução aquosa 0,10 moldm⁻³ de sulfato de ferro (II) e solução aquosa 0,10 moldm⁻³ de nitrato de prata, respectivamente da esquerda para a direita.

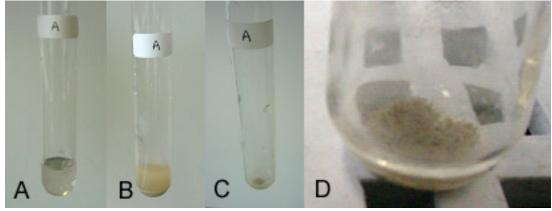
Soluções identificadoras. Solução aquosa de tiocianato de potássio, solução aquosa de hexacianoferrato (III) de potássio e solução aquosa de cloreto de potássio, respectivamente da esquerda para a direita.


Precauções/segurança

Nitrato de prata: R: 8-34; S: 26-36/37/39-45.

Procedimento

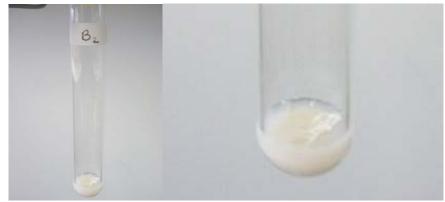
- 1. Num tubo de ensaio (A) colocar cerca de 20 gotas de solução aquosa de nitrato de prata e adicionar igual volume de solução aquosa de sulfato de ferro (II).
- Deixar a solução repousar e dividir a solução sobrenadante por três tubos de ensaios (B₁, B₂ e B₃).
- Adicionar ao tubo de ensaio B₁ algumas gotas de solução aquosa de tiocianato de potássio.
- 4. Adicionar ao tubo de ensaio B₂ algumas gotas de solução aquosa de cloreto de potássio.
- Adicionar ao tubo de ensaio B₃ algumas gotas de solução aquosa de hexacianoferrato (III) de potássio.
- 6. Registar todas as observações efectuadas.


Montagem

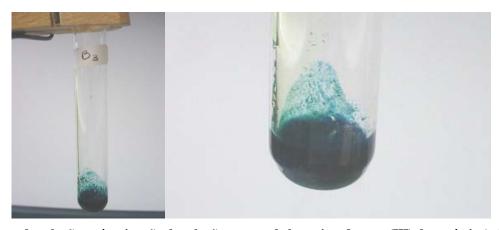
Montagem.

Resultados

Ao adicionar igual volume de solução aquosa de sulfato de ferro (II) à solução aquosa de nitrato de prata que se encontra no tubo de ensaio A, verifica-se imediatamente a formação de um precipitado acinzentado. Após a transferência do liquido sobrenadante para os outros três tubos de ensaios, o precipitado de prata acinzentado fica no interior do tubo de ensaio.


(A)Aspecto da solução aquosa de nitrato de prata; (B) Aspecto da mistura das soluções aquosas de nitrato de prata e sulfato de ferro (II); (C) e (D) Aspecto da prata precipitada.

Aquando da junção de algumas gotas da solução aquosa de tiocianato de potássio à solução que se encontra no tubo de ensaio B_1 , forma-se uma solução de cor vermelha. Esta solução tem a cor característica do ião hexatiocianoferrato (III) e indica a presença de iões Fe^{3+} na solução.


Aspecto da solução após a junção de solução aquosa de tiocianato de potássio (solução identificadora de iões Fe^{3+})

Após a junção de algumas gotas de solução aquosa de cloreto de potássio à solução que se encontra no tubo de ensaio B_2 , verifica-se a formação de um precipitado branco de cloreto de prata, o que indica a presença de iões Ag^+ na solução.

Aspecto da solução após a junção de e solução aquosa de cloreto de potássio (solução identificadora de iões \mathbf{Ag}^+).

Depois de adicionar algumas gotas de solução aquosa de hexacianoferrato (III) de potássio, verifica-se imediatamente a formação de um precipitado de cor azul. Este precipitado azul é de hexacianoferrato (III) de ferro (II) e indica a presença de iões Fe²⁺ na solução.

Aspecto da solução após a junção de solução aquosa de hexacianoferrato (III) de potássio (solução identificadora de iões Fe^{2^+}).

Quadro resumo dos dados registados durante os testes com as soluções identificadoras de iões.

Tubo de ensaio	Solução aquosa identificadora	Observações	Iões presentes em solução
B_1	Tiocianato de potássio 0,10 moldm ⁻³	Formou-se uma solução de cor vermelha intensa devida à presença do ião hexatiocianoferrato (III)	Fe ³⁺
B_2	Cloreto de potássio 1,0 moldm ⁻³	Formou-se um precipitado branco de cloreto de prata que escureceu com o tempo	Ag^+
\mathbf{B}_3	Hexacianoferrato (III) de potássio 0,10 moldm ⁻³	Formou-se um precipitado azul de hexacianoferrato (III) de ferro (II)	Fe ²⁺

Através da análise dos resultados obtidos pode concluir-se que a reacção foi incompleta pois, após a realização dos testes de identificação de iões, verifica-se que todos os iões Fe²⁺, Ag⁺, Fe³⁺ encontram-se em simultâneo na solução o que implica que a reacção química entre as duas soluções aquosas de nitrato de prata e sulfato de ferro (II) seja incompleta.

Aspecto das soluções e precipitados obtidos durante a realização experimental.