Projeto Ciência Viva

INTRODUÇÃO À QUÍMICA VERDE, COMO SUPORTE DA SUSTENTABILIDADE, NO ENSINO SECUNDÁRIO

AL 0.1 10° ano – Separar e purificar

DESSALINIZAÇAO DE ÁGUA SALGADA

1. REAGENTES

Reagentes

- Solução aquosa de cloreto de sódio

2. SEGURANÇA

Regulamentação 67/548/CEE

Substâncias	Símbolo de risco	Frases de Risco	Frases de Segurança
Reagentes			
Água	Sem indicação	Sem indicação	Sem indicação
Cloreto de sódio	Sem indicação	Sem indicação	Sem indicação

Regulamentação GHS

Substâncias	Pictogramas de perigo	Palavra- -sinal	Advertências de perigo	Recomendações de prudência
Reagentes				
Água	Sem indicação	Sem indicação	Sem indicação	Sem indicação
Cloreto de sódio	Sem indicação	Sem indicação	Sem indicação	Sem indicação

Dessalinização de água salgada Pág. 1/7

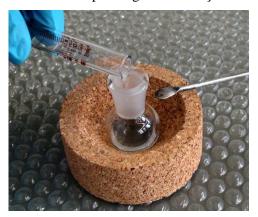
3. MATERIAL E EQUIPAMENTO

Figura 1. Material e equipamento da atividade laboratorial.

Material

- 1 Condensador de Liebig de 10 cm
- 1 Cabeça de Hickman de 2 mL
- 1 Balão de fundo redondo de 10 mL
- 1 Suporte universal
- 3 Nozes
- 3 Garras para micro
- 1 Pipeta de Pasteur
- 1 Placa de alumínio
- 1 Proveta de 5 mL
- 1 Termómetro de vareta metálica (250 °C)
- 1 Termómetro de álcool
- 1 Suporte de cortiça
- 1 Tetina para pipeta
- 1 Caixa de Petri de diâmetro 40 mm
- 6 Esferas de vidro

Equipamento


Placa de aquecimento

Equipamento para leitura da energia

Dessalinização de água salgada Pág. 2/7

4. PROCEDIMENTO EXPERIMENTAL

1. Transferir 5 mL de uma solução aquosa de cloreto de sódio com uma concentração de 35g/L para um balão de fundo redondo de 10 mL. Adicionar esferas de vidro para regular a ebulição.

Figura 2. Transferir a solução para o balão de fundo redondo.

- 2. Montar o sistema de destilação simples de acordo com a Fig. 3.
- 3. Ligar a placa de aquecimento ao medidor de energia e iniciar o aquecimento. O regulador de temperatura da placa de aquecimento deve ser colocado na posição 150 °C, devendo utilizar -se o termómetro para controlar a temperatura da placa de forma a rondar os 160°C. Iniciar o cronómetro. ATENÇÃO, A PLACA DE ALUMÍNIO ESTÁ A UMA TEMPERATURA ELEVADA ASSIM COMO A HASTE DO TERMÓMETRO.

Figura 3. Montagem da destilação simples a microescala. Figura 4. Montagem com equipamento para medir energia.

Dessalinização de água salgada Pág. 3/7

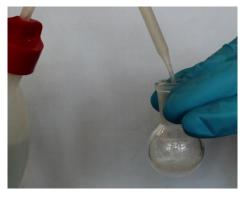
4. Realizar a destilação até à separação da água do sal. Quando necessário retirar para uma proveta de 5 mL, pela tubuladura lateral da cabeça de Hickman, a água que vai condensando, utilizando uma pipeta Pasteur. NÃO DEIXE SECAR COMPLETAMENTE O CONTEÚDO DO BALÃO.

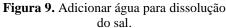
Figura 5. Retirar o condensado pela tubuladura lateral da cabeça de Hickman.

Figura 6. Proveta com o condensado.

5. No fim da destilação registar o tempo e a energia medidos. Levantar o conjunto formado pela cabeça de Hickman e pelo condensador de Liebig e deixar arrefecer. Retirar toda a água que se formou na cabeça de Hickman. Retirar o balão para um suporte até arrefecer.

Figura 7. Retirar toda a água presente na cabeça de Hickman.




Figura 8. Balão com o sal separado.

- 6. Medir a água utilizada para a refrigeração do condensador de Liebig. Para isso, medir o tempo que demora a encher um balão de 500 mL, introduzindo o tubo de saída da água de refrigeração no balão. Registar os valores.
- 7. Registar o volume total de água recuperado na destilação, guardado na proveta.

Dessalinização de água salgada Pág. 4/7

8. Determinar a massa de sal recuperada. Para isso dissolver todo o sal que se encontra no balão juntando a quantidade mínima de água necessária.

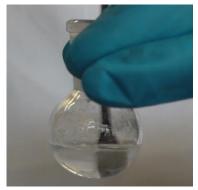


Figura 10. Dissolução do sal.

9. Transferir a solução para uma caixa de Petri. Lavar o balão com água destilada para reduzir as perdas de sal. Deixar evaporar a água ao ar.

Figura 11. Transferir a solução para uma caixa de Petri.

Figura 12. Sal recuperado.

- 10. Guardar o sal recuperado num frasco devidamente rotulado para utilizações posteriores.
- 11. Calcular o rendimento da destilação no que se refere à água e ao sal.

Dessalinização de água salgada Pág. 5/7

5. REGISTO DE DADOS EXPERIMENTAIS E CÁLCULOS

RENDIMENTO	
Concentração da solução aquosa de cloreto de sódio	
Volume de solução usada	
Volume inicial de água / mL (por cálculo a partir da concentração da solução)	
Massa inicial de sal / mg (por cálculo a partir da concentração da solução)	
Volume recuperado de água / mL	
Massa recuperada de sal / mg	
Rendimento relativo à água η (água) = volume de água recuperada / volume de água inicial	
Rendimento relativo ao sal η (sal) = massa de sal recuperada / massa de sal inicial	
· · · · · · · · · · · · · · · · · · ·	·

TEMPO E ENERGIA			
Duração da destilação / s			
Energia utilizada / kWh			
Preço do kWh / EUR			
Custo da energia utilizada / EUR			

ÁGUA DE REFRIGERAÇÃO			
Volume medido para cálculo do caudal / mL			
Tempo medido para cálculo do caudal / s			
Caudal /mLs ⁻¹ Caudal = Volume medido / Tempo medido			
Duração da destilação /min			
Água de refrigeração utilizada na destilação /mL			

Dessalinização de água salgada Pág. 6/7

6. VALORES OBTIDOS PELOS OUTROS GRUPOS

	Grupo 1	Grupo 2	Grupo 3	Grupo 4	Média	Desvio padrão
Rendimento relativo à água (%)						
Rendimento relativo ao sal (%)						
Energia / kWh						
Custo da energia / EUR						
Duração da destilação / min						
Água de refrigeração utilizada na destilação /mL						

7. CONCLUSÕES

- Analisar a tabela anterior e concluir acerca dos rendimentos obtidos, da energia utilizada e seu custo, da duração da destilação e da água de refrigeração utilizada.
- Comparar os resultados obtidos pelos diferentes grupos considerando o desvio padrão.

Dessalinização de água salgada Pág. 7/7