#### **GREEN CHEMISTRY EDUCATION:** TOWARDS A SYSTEMS THINKING APPROACH

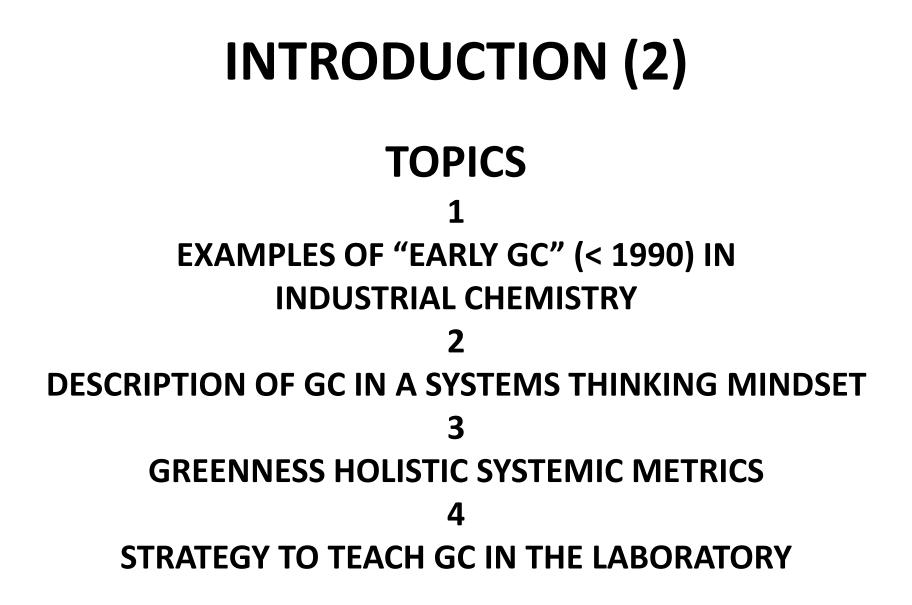
### ADÉLIO A S C MACHADO FACULDADE DE CIÊNCIAS DO PORTO *amachado@fc.up.pt*

# **INTRODUCTION (1)**

# GC TEACHING APPROACH IN OPORTO

#### STARTED IN

#### **INDUSTRIAL CHEMISTRY & SIMILAR COURSES:**


#### MINDSET OF SYSTEMS THINKING

### **OBJECTIVES**

#### **1 - PRESENT OUR GC TEACHING ACTIVITIES**

╋

#### 2 - SHOW THE IMPORTANCE OF SYSTEMS THINKING FOR GC



# **GC TEACHING AT OPORTO (1)** 2000 SECTIONS ON GC IN 2 COURSES BSc CHEM EU BOLOGNA'S BSc & MSc INDUSTRIAL CHEMISTRY -> INDUSTRIAL GC (3<sup>RD</sup> YEAR, 1<sup>ST</sup> SEM)

IND. ECOLOGY & SUSTAINABILITY ENGINEERING (4<sup>TH</sup> YEAR, 2<sup>ND</sup> SEM)

# GC TEACHING AT OPORTO (2)

#### 2005

#### MSc EDUCATIONAL CHEM. DEGREE SECONDARY SCHOOL TEACHERS

## **ONE SEMESTER GC COURSE**

WITH LABORATORY ACTIVITIES SMALL NUMBERS OF STUDENTS

# **"EARLY GC" (1)**

#### HISTORY OF INDUSTRIAL CHEMISTRY (18<sup>TH</sup> CENTURY – 1990) 1

CASES WHERE NEGATIVE ENVIRONMENTAL & HEALTH IMPACTS WERE ELIMINATED:

# **"EARLY GC" PRACTICED!!!**

2

#### **"NEGATIVE" EXAMPLES** (FALSE GREEN PRODUCTS, ETC.)

# "EARLY GC" (2)

**TABLE 1 - EXAMPLES OF EARLY GC: INDUSTRIAL PROCESSES** 

| EXAMPLE                          | <b>GREENNESS FEATURES</b>              |
|----------------------------------|----------------------------------------|
| PROCESS SUBSTITUTION             |                                        |
| IN SODA MANUFACTURE              | <b>REPLACEMENT OF A VERY POLLUTING</b> |
| $LEBLANC \rightarrow SOLVAY$     | PROCESS BY A GREENER ONE               |
| MANUFACTURE OF SULFURIC ACID     | GREEN SYNTHESIS:                       |
| (LEAD CHAMBER & CONTACT PROCESS) | CATALYTIC REACTIONS                    |
|                                  | 100% ATOM ECONOMY, PROVIDES ENERGY     |
| EMERGING PETROCHEMICAL INDUSTRY: | CATALYTIC REACTIONS FOR                |
| REFORMING AND CRACKING           | TRANSFORMATION OF                      |
|                                  | <b>RESIDUAL CO-PRODUCTS IN SALABLE</b> |
|                                  | <b>PRODUCTS: LOW E-FACTORS</b>         |

# "EARLY GC" (3)

#### TABLE 1 (CONT) - EXAMPLES OF EARLY GC: PRODUCTS

| EXAMPLE                                         | GREENNESS FEATURES                                                 |
|-------------------------------------------------|--------------------------------------------------------------------|
| SMOKELESS POWDER                                | HEALTH & SAFETY INTRINSIC BENIGNITY:<br>SAFE PRODUCT FOR UTILIZERS |
| MANUFACTURE OF DYNAMITE BY                      |                                                                    |
| (SAFE USE OF NITROGLYCERINE<br>AS AN EXPLOSIVE) | FORMULATION TO DECREASE RISKS                                      |

# **"EARLY GC" (4)**

#### TABLE 2 – NEGATIVE EXAMPLES OF EARLY GC

FREONS (CFCs)

#### FALSE GC: ADVERTISED AS SAFE PRODUTCS, BUT UNEXPECTED SIDE DANGEROUS IMPACTS FOUND LATER

**BHOPAL DISASTER** 

#### ABANDONMENT OF GC: SUBSTITUTION OF A GREEN BY A DANGEROUS SYNTHETIC PATHWAY

# **"EARLY GC" (5)**

#### **DISCUSSION AS PRELIMINARY MATERIAL**

#### SMOOTH INTRODUCTION TO GC

- GC IMPLEMENTED IN INDUSTRIAL SYSTEMS
  - USEFUL KNOWLEDGE FOR STRATEGIC DEVELOPMENT OF GC
    - STRESSES THE IMPORTANCE OF

SYSTEMS THINKING IN GC

# LEBLANC PROCESS -> SOLVAY PROCESS

## Na<sub>2</sub>CO<sub>3</sub> ("SODA ASH") MANUFACTURE:

#### **EMERGING CHEMICAL INDUSTRY**

#### **19<sup>TH</sup> CENTURY:**

# "EARLY GC" (6): LEBLANC → SOLVAY

# "EARLY GC" (7): LEBLANC → SOLVAY

# **INDUSTRIAL REVOLUTION** REQUIRED INCREASING AMOUNTS OF

# **BASIC CHEMICALS**

ALKALIS TO BLEACH COTTON  $Na_2CO_3$ 

# "EARLY GC" (8): LEBLANC → SOLVAY

#### Na<sub>2</sub>CO<sub>3</sub>

#### **OBTAINED FROM BIOMASS:**

#### **BURNING PLANTS + WATER EXTRACTION**

#### KELP - SCOTLAND BARILLA - SOUTH SPAIN

# **RENEWABLE: GREEN PRODUCT!**

# "EARLY GC" (9): LEBLANC → SOLVAY

#### 1791

#### **INVENTION OF LEBLANC PROCESS**

#### **RAW MATERIALS:**

#### SALT + LIMESTONE + COAL + SULFURIC ACID

#### **SYNTHESIS PATHWAY: 2 REACTIONS**

LEBLANC + LEAD CHAMBER PROCESS (H<sub>2</sub>SO<sub>4</sub>): ORIGIN OF INDUSTRIAL CHEMISTRY

#### "EARLY GC" (10): LEBLANC → SOLVAY

#### INDUSTRIAL SUCCESS: MANY PLANTS BUILT IN FRANCE, UK, ...

#### **INCREASE OF THE SCALE OF THE PLANTS**

#### SEVERE ENVIRONMENTAL IMPACTS DUE TO BYPRODUCTS

# "EARLY GC" (11): LEBLANC → SOLVAY

# **LEBLANC PROCESS**

(1) PREPARATION OF SODIUM SULFATE ("SALT CAKE") NaCl +  $H_2SO_4 \rightarrow Na_2SO_4 + 2$  HCl TOXIC FUMES

(2) CONVERSION OF THE "SALT CAKE" TO "BLACK ASH"  $Na_2SO_4 + 4 C + CaCO_3 \rightarrow Na_2CO_3 + CaS + 4 CO_4$  $H_2S + SO_2$ 

(3) EXTRACTION OF  $Na_2CO_3$  WITH  $H_2O_3$ 

### "EARLY GC" (12): LEBLANC → SOLVAY

# DEVASTATING IMPACTS HCI

#### **HEALTH OF WORKERS**

# HCI + H<sub>2</sub>S + SO<sub>2</sub> POPULATION: HEALTH ENVIRONMENT: VEGETATION, CORROSION, ...

# "EARLY GC" (13): LEBLANC → SOLVAY **NO ENVIRONMENTALISTS BUT...** "END OF PIPE" MEASURES **REMOVAL OF THE "BLACK ASHES" TO OLD MINES** 2 **ABSORPTION TOWERS FOR RETENTION OF HCI** DISCHARGE TO RIVERS

**MOVING POLLUTANTS BETWEEN COMPARTMENTS!** 

# "EARLY GC" (14): LEBLANC → SOLVAY

# MEASURES

- DIFFICULT TO IMPLEMENT/INOPERATIVE
- EXPENSIVE: EXAMPLE OF POLLUTION COSTS!

#### ALTERNATIVE SYNTHETIC PATHWAYS SEARCHED "POLLUTION PREVENTION" SOLVAY PROCESS (1863)

# "EARLY GC" (15): LEBLANC → SOLVAY

# **SOLVAY PROCESS**

(1) BUBBLING OF CO<sub>2</sub> THROUGH NaCl SATURATED WITH NH<sub>3</sub> NaCl + NH<sub>3</sub> + CO<sub>2</sub> + H<sub>2</sub>O  $\rightarrow$  NaHCO<sub>3</sub> + NH<sub>4</sub>Cl

(2) HEATING OF NaHCO<sub>3</sub> NaHCO<sub>3</sub>  $\rightarrow$  Na<sub>2</sub>CO<sub>3</sub> + CO<sub>2</sub> + H<sub>2</sub>O INNOVATION: RECYCLING OF NH<sub>3</sub> (3) NH<sub>3</sub> RECOVERY (AUXILIARY REAGENT) 2 NH<sub>4</sub>Cl + CaO  $\rightarrow$  2 NH<sub>3</sub> + CaCl<sub>2</sub> + H<sub>2</sub>O

**INNOVATION: PATHWAY WITHOUT NEGATIVE IMPACTS OF RESIDUES** 

## "EARLY GC" (16): LEBLANC → SOLVAY

# **SOLVAY PROCESS**

#### NO SEVERE ENVIRONMENTAL IMPACTS

- TECHNICALLY SIMPLER
  - BETTER ECONOMY

AUXILIARY MATERIAL RECOVERED & RECIRCULATED: NO EMISSION AS POLLUTANT V RECYCLING OF MATERIALS TO SAVE ATOMS LATER COMMONLY USED IN CHEMICAL INDUSTRY

### "EARLY GC" (17): LEBLANC → SOLVAY

# **SOLVAY PROCESS**

#### EARLY EXAMPLE OF

- DELIBERATE SUCCESSFUL SEARCH OF A NEW SYNTHETIC PATHWAY FOR ELIMINATING ENVIRONMENTAL IMPACTS
  - PROACTIVE MEASURES FOR PREVENTING RESIDUES BY RECYCLING

(1<sup>ST</sup> PRINCIPLE)

### "EARLY GC" (18): LEBLANC → SOLVAY

#### **EXAMPLE OF**

# CONTRIBUTION OF CHEMISTRY TO SUSTAINABLE DEVELOPMENT

#### A CLEANER TECHNOLOGY → DEFENSE OF THE ENVIRONMENT

#### CONTRIBUTED AS WELL TO

#### CHEAP COTTON CLOTHES FOR THE PEOPLE → SOCIETAL GOOD ECONOMIC DEVELOPMENT → WEALTH CREATION

### "EARLY GC" (19): LEBLANC → SOLVAY

#### SOLVAY PROCESS BETTER THAN LEBLANC PROCESS BUT...

### **COMPLETE REPLACEMENT SLOW**

#### SOLVAY PROCESS → NEW PLANTS EXISTENT LEBLANC PLANTS → KEPT WORKING UNTIL THE END OF THE 1st GREAT WAR

### **USED IN PARALLEL > 40 YEARS**

#### "EARLY GC" (20): LEBLANC → SOLVAY

#### **HOEWELLS (2005):**

#### CASE STUDY

MANAGEMENT OF TECHNOLOGICAL INNOVATION

# $\mathbf{\mathbf{V}}$

# SHOWS PRESENT DIFFICULTIES OF PENETRATION OF GC IN INDUSTRY

### "EARLY GC" (21): LEBLANC → SOLVAY

#### RESISTANCE OF THE LEBLANC PROCESS AGAINST A BETTER COMPETITOR?

# **CAUSES OF TWO TYPES**

1

INVENTION OF PROCESSES FOR

#### **RECOVERY OF THE RESIDUES**

MANUFACTURE OF OTHER PRODUCTS

# EARLY GC" (22): LEBLANC -> SOLVAY

#### **RECOVERY OF RESIDUES FROM THE LEBLANC PROCESS**

1 – HCI RECOVERY (AS Cl<sub>2</sub>) – MANUFACTURE OF "BLEACHING POWDER" (CaClOCI)

4 HCl + MnO<sub>2</sub>  $\rightarrow$  Cl<sub>2</sub> + MnCl<sub>2</sub> + 2 H<sub>2</sub>O Cl<sub>2</sub> + Ca(OH)<sub>2</sub>  $\rightarrow$  CaClOCl + H<sub>2</sub>O

#### WITH Mn RECOVERY

 $MnCl_2 + Ca(OH)_2 \rightarrow Mn(OH)_2 + CaCl_2$  $Mn(OH)_2 + \frac{1}{2}O_2 \rightarrow MnO_2 + H_2O$ 

(WELDON PROCESS, 1869)

#### ALTERNATIVE (GAS PHASE, CATALYST: CuCl<sub>2</sub>) 2 HCl + $\frac{1}{2}$ O<sub>2</sub> $\rightarrow$ Cl<sub>2</sub> + H<sub>2</sub>O

(DEACON PROCESS, 1868)

#### 2 – S RECOVERY (CLAUS-CHANCE PROCESS) CaS + CO<sub>2</sub> + H<sub>2</sub>O $\rightarrow$ CaCO<sub>3</sub> + H<sub>2</sub>S H<sub>2</sub>S + ½ O<sub>2</sub> $\rightarrow$ S + H<sub>2</sub>O

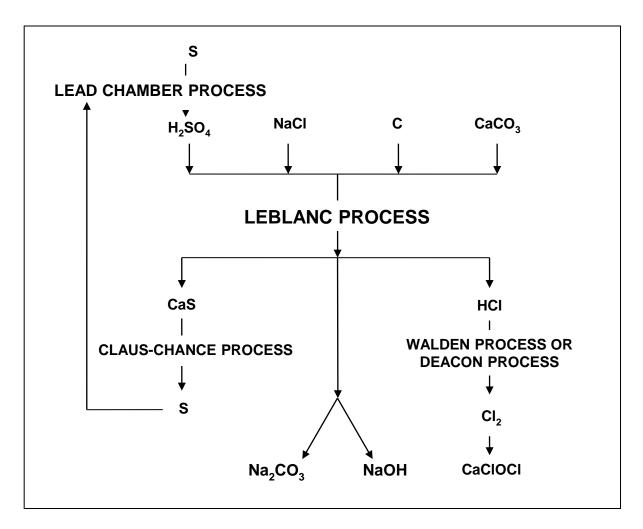
(CHANCE PROCESS, 1882) (CLAUS PROCESS, 1988)

### EARLY GC" (23): LEBLANC - SOLVAY

PROCESS MODIFIED TO PRODUCE NaOH ("CAUSTIC SODA")

PROFIT: NaOH > Na<sub>2</sub>CO<sub>3</sub>

**RECYCLING + NEW PRODUCTS:** CONTRIBUTED TO KEEP LEBLANC IN COMPETITION WITH A ETTERPROCESS


### EARLY GC" (24): LEBLANC - SOLVAY

# INVENTION OF AN ECO-INDUSTRIAL SYSTEM CENTERED AT THE LEBLANC PROCESS

#### EARLY EXAMPLE OF INDUSTRIAL ECOLOGY

#### IMPORTANCE FOR THE INDUSTRIAL PRACTICE OF CHEMISTRY

# EARLY GC" (25): LEBLANC - SOLVAY



# EARLY GC" (26): LEBLANC → SOLVAY E-FACTORS:

LEBLANC PROCESS VS ECO-INDUSTRIAL SYSTEM (UK)

#### LEBLANC PROCESS (1863): E-FACTOR = 5,3

280.000 TON OF SODA FROM 1.760.000 TONS OF RAW-MATERIALS

#### ECO-INDUSTRIAL SYSTEM (LATER, ?): E-FACTOR = 2

3.000 UNITS OF SALABLE PRODUCTS FROM 9.000 UNITS OF RAW-MATERIAL

CALCULATED THEORETICAL VALUE (ASSUMING S & CI FULLY RECOVERED) E-FACTOR = 1,98

GOOD EFFICIENCY OF ECO-INDUSTRIAL SYSTEM: HIGH ATOM PRODUCTIVITY!

## EARLY GC" (27): LEBLANC - SOLVAY

2

#### NON-TECHNICAL CAUSES SUPPORTED THE LEBLANC PROCESS

1

#### 1891

#### UK COMPANIES ( > 40) AGGLOMERATED → UNITED ALKALI CO ONLY EFFICIENT PLANTS WERE KEPT

#### SITUATION OF PATENTS FAVORED THE UNITED ALKALI CO AGREEMENT ABOUT PRICES/MARKET QUOTAS WITH THE COMPETITOR (MOND)

2

## EARLY GC" (28): LEBLANC - SOLVAY

PENETRATION OF NEW GREENER PROCESSES SLOWED DOWN BY ECONOMIC & OTHER REASONS

BEGINNING OF THE 20<sup>TH</sup> CENTURY DEATH OF LEBLANC PROCESS ELECTROLYTIC PROCESS: Cl<sub>2</sub> & NaOH REVOLUTION OF THE ALKALI INDUSTRIAL SECTOR

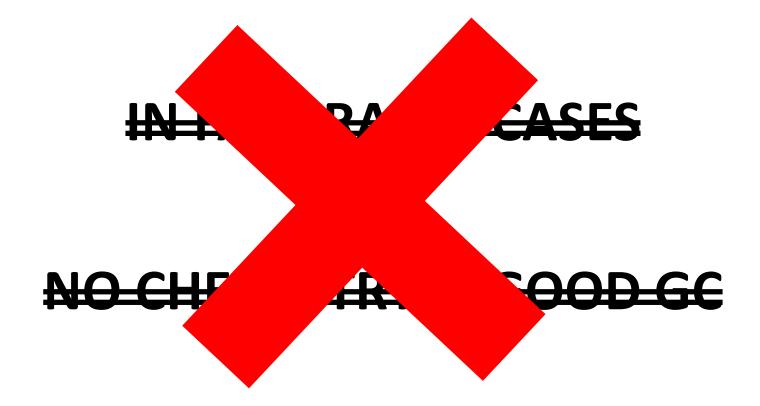
# (ELECTRICITY = ENERGY)

# EARLY GC" (29): LEBLANC - SOLVAY

# **RECENT DEVELOPMENT: US, 1986**

#### LAST SOLVAY PLANT CLOSED DOWN

#### Na<sub>2</sub>CO<sub>3</sub> OBTAINED FROM TRONA (MINERAL BRINES


#### ONLY RECRYSTALLIZATION : NO CHEMISTRY SIMPLER ≈ 1/2 THE COST

#### EARLY GC" (30): LEBLANC - SOLVAY

### **IN FAVORABLE CASES**

### **NO CHEMISTRY IS GOOD GC**

### EARLY GC" (31): LEBLANC - SOLVAY



# EARLY GC" (32): LEBLANC - SOLVAY

# CONCLUSION

#### PROCESS REPLACEMENT: LEBLANC -> SOLVAY

#### **VERY RICH EXAMPLE FOR GC**

- PROCESS SUBSTITUTION AIMED AT GREENNESS
  - PREVENTION OF RESIDUES BY RECYCLING
  - IMPORTANCE OF ECO-INDUSTRIAL SYSTEMS
- NON-CHEMISTRY BARRIERS THAT SLOW SUBSTITUTION

# EARLY GC" (33): CONCLUSIONS

#### **INDUSTRIAL SYSTEMS IN THE PAST:**

# WHEN STRONG NEGATIVE IMPACTS WERE FOUND CHEMISTS PROVIDED ALTERNATIVES TO MINIMIZE/ELIMINATE THE PROBLEMS GLOBAL PURPOSE OF GC AT PRESENT NOT NEW FOR CHEMISTRY!!!

# EARLY GC" (34): CONCLUSIONS

#### **HISTORY OF "EARLY" GC**

#### **ELIMINATION OF NEGATIVE IMPACTS BY PEOPLE WHO**

- BUILT AND MANAGED INDUSTRIAL SYSTEMS
- HAD ACQUIRED A SYSTEMS THINKING MINDSET

SUGGESTS THAT

SYSTEMS THINKING IS WORTH USING IN GC

# EARLY GC" (35): CONCLUSIONS

### **INCISIVE ADVICE TO STUDENTS**

#### EARLY CHEMISTS USED GC IN THE PAST WITHOUT KNOWING WHAT IT WAS...

... NOW THAT KNOW IT...

**...IT WILL BE MUCH EASIER TO DEVELOP GC** AS A SYSTEMATIC PRACTICE

### **SYSTEMS THINKING & GC (1)**

#### SYSTEMS THINKING PRESENTATION OF GC

#### PROVIDES A GLOBAL UNIFIED VISION OF ITS ACTIVITIES

#### SHOWS THE COMPLEXITY OF RE-SHAPING CHEMISTRY TO GC

# **SYSTEMS THINKING & GC (2)**

#### **SYSTEMS COMPONENTS** MATTER, ENERGY & INFORMATION

#### MUST BE CONSIDERED • TOGETHER • INCLUDING THEIR INTERCONNECTIONS FOR HOLISTIC MANAGEMENT OF THE SYSTEM • OBJECTIVE

### **SYSTEMS THINKING AND GC (3)**

### SYSTEMS APPROACH TO GC MEANS

- JOINT OPTIMIZATION OF THE 3 COMPONENTS
  - SIMULTANEOUS INCREASE OF THEIR
     PRODUCTIVITIES

# SYSTEMS THINKING & GC (4) PRODUCTIVITY (ECONOMICS) **AMOUNT OF PRODUCT** PER UNIT OF **PRODUCTION FACTOR USED**

**PRODUCT IMBUED WITH GREENNESS** 

# SYSTEMS THINKING & GC (5)

**"SYSTEMIC CHEMISTRY": GC OBJECTIVES** 

# USE OF LESS ...

- **1 MATTER: DEMATERIALIZATION** 
  - 2 ENERGY: "DENERGIZATION"

 $\equiv \Psi$  ENERGY INTENSITY

3 - INFORMATION: "DEINFORMATION"

**≡ SIMPLIFICATION** 

# **SYSTEMS THINKING & GC (6)**

# **SIMPLIFICATION:**

#### **MANAGEMENT OF**

# **SIMPLER SYSTEMS**

#### REQUIRES

# LESS INFORMATION (INVOLVES LESS KNOWLEDGE)

### **SYSTEMS THINKING & GC (7)**

# **GC HAS BEEN PURSUING**

# THESE OBJECTIVES

# SINCE ITS EMERGENCE

# SYSTEMS THINKING & GC (8) DEMATERIALIZATION

- SYNTHETIC PATHWAYS WITH LARGE ATOM ECONOMY
- CATALYTIC INSTEAD OF STOICHIOMETRIC REACTIONS
  - ELIMINATION OF GROUP PROTECTION
  - SEPARATION & RECYCLING OF REAGENTS

# SYSTEMS THINKING & GC (9)

**ENERGY INTENSITY REDUCTION** 

■ CATALYSTS: ↓ REACTION TEMPERATURE

# ALTERNATIVE TECHNOLOGIES FOR PROVIDING ENERGY TO THE REACTOR: CONSUME VS. HEATING

### **SYSTEMS THINKING & GC (10)**

### SIMPLIFICATION

#### **TWO TYPES OF MEASURES**

#### ADRESSED TO...

# 1 - THE EXTERNAL IMPACTS 2 - THE CHEMISTRY

# SYSTEMS THINKING & GC (11)

# SIMPLIFICATION OF IMPACTS

ELIMINATION OF TOXIC PRODUCTS

NO USE OF DANGEROUS/TOXICS

**SUBSTANCES IN SYNTHESIS** 

# SYSTEMS THINKING & GC (12) VERY BROAD SCOPE : LESS IMPACTS ≡ ...

### **ENVIRONMENT:**

... **= MORE PROTECTION** 

#### **ECONOMY:**

... ≡ LESS LEGISLATION & CONTROL ≡ LESS COSTS

#### **SOCIETY:**

... = BETTER HEALTH & QUALITY OF LIFE

# SYSTEMS THINKING & GC (13)

# SIMPLIFICATION OF CHEMISTRY

- SYNTHETIC PATHWAYS WITH LESS STEPS
- TELESCOPING STEPS ALONG PATHWAYS
  - ELIMINATION OF REACTION SOLVENT
    - RATIONALIZATION OF SOLVENTS

# SYSTEMS THINKING & GC (14)

# SIMPLIFICATION OF CHEMISTRY

# **IMPORTANT** ...

#### ... TO DECREASE THE REQUIREMENTS OF CHEMICAL INFORMATION

# **BUT ALSO...TO FACILITATE**

**DEMATERIALIZATION AND "DENERGIZATION"** 

# SYSTEMS THINKING & GC (15) CROSSED INTERACTIONS BETWEEN MATTER, ENERGY & INFORMATION

# LINEAR DESCRIPTION: SIMPLISTIC

# SYSTEMS THINKING & GC (16) CROSSED INTERACTIONS - WIDESPREAD!

# **SEPARATION & RECYCLING**

#### CONTRIBUTES TO DEMATERIALIZATION (个) BUT ... REQUIRES ENERGY (↓)

DEMAT... AND "DENERG..." CONFLICT: OPTIMIZATION REQUIRED TO FIND A BALANCE

DIFFERENT FROM CASE TO CASE: IF SEPARATION REQUIRES A HUGE AMOUNT OF ENERGY RECYCLING DOES NOT PROVIDE GREENNESS

### **SYSTEMS THINKING & GC (17)**

#### SIDE REMARK

### **IMPORTANCE OF ENERGY IN CHEMISTRY**

#### SCARCE ATTENTION PAID TO ENERGY IN THE TEACHING LABORATORIES OF SYNTHESES

# MATTER-ENERGY INTERACTION REQUIRES MORE ATTENTION!

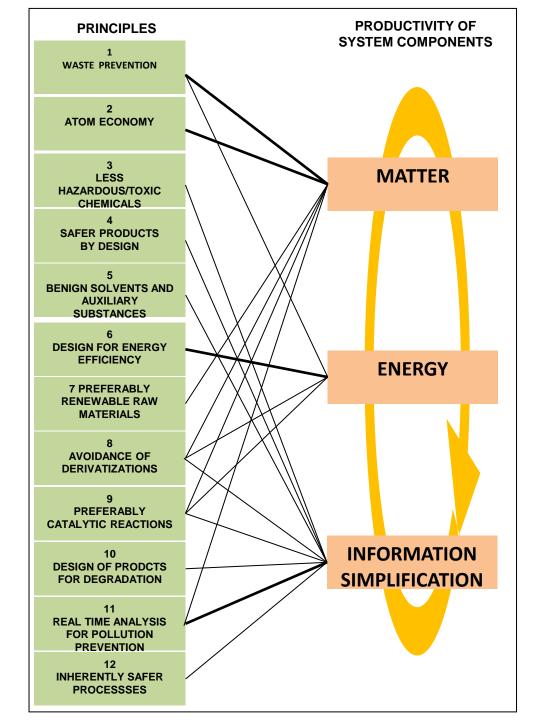
### **SYSTEMS THINKING & GC (18)**

**MATTER, ENERGY & INFORMATION** 

#### LINEAR MODEL :

#### ASSUMES THE ORTHOGONALITY OF PRODUCTIVITIES

# NOT VALID IN MOST SITUATIONS: CROSSED INTERACTIONS!


# SYSTEMS THINKING & GC (19) GREENNESS

#### **INVOLVES...**

# A LARGE NUMBER OF FACTORS A LARGER NUMBER OF INTERCONNECTIONS

# **VERY COMPLEX CONCEPT**

FIG. 4



# INTERACTIONS: NUMEROUS COMPLEX

### **SYSTEMS THINKING & GC (21)**

# FACTORS & INTERACTIONS CHANGE

#### ALONG THE WAY LABORATORY -> FINAL USE OF CHEMICALS

# GREENNESS CHAIN OF CHEMISTRY

# SYSTEMS THINKING & GC (22)

# THE GREENNESS CHAIN

**GREEN (LABORATORY) CHEMISTRY** 

**GREEN SYNTHESIS** 

**GREEN SCALE-UP** 

**GREEN CHEMICAL EN**GINEERING

GREEN PROCESS DEVELOPMENT

**GREEN CHEMICAL INDUSTRY** 

GREEN MANUFACTURING GREEN FORMULATION

GREEN (SOCIETY) USE GREEN USE OF CHEMICALS

SUSTAINABLE DEVELOPMENT

### **SYSTEMS THINKING & GC (23)**

# GREENNESS ITSELF MUST BE EVALUATED UNDER A LIFE-CYCLE PERSPECTIVE

FOR IDEAL PURPOSE OF MAXIMIZING IT CUMULATIVELY UP TO THE END OF CHAIN

### **SYSTEMS THINKING & GC (24)**

# **IMPORTANCE OF G (LABORATORY) C**

# WITHOUT GREENNESS AT DEPARTURE IMPOSSIBLE GREENNESS AT THE END OF CHAIN

# SYSTEMS THINKING & GC (25)

#### NATURE OF THE GREENNESS IMBUED IN THE PRODUCT & SYNTHETIC PATHWAY

# GREENNESS IN THE LABORATORY MUST BE SUITABLE TO BE KEPT ALONG THE CHAIN

# **SYSTEMS THINKING & GC (26)**

#### SYSTEMS THINKING APPROACH TO GC

**SHOWS** 

#### ITS COMPLEX NATURE

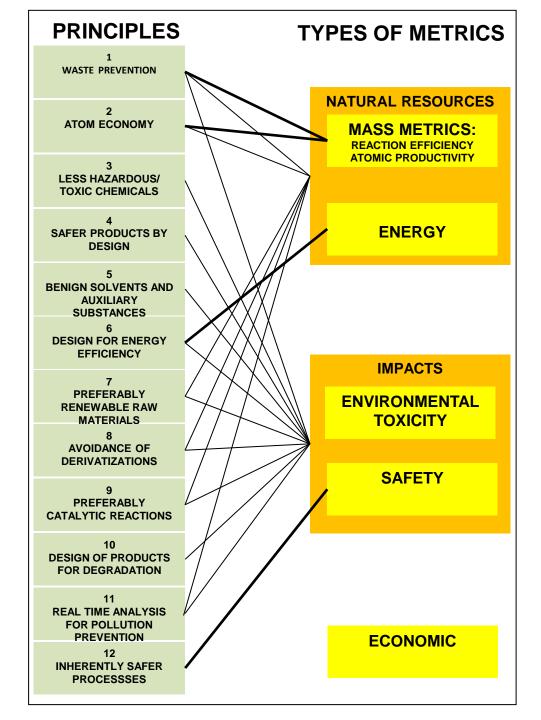
#### DIFFICULTIES OF IMPLEMENTATION

 ADVANTAGES OF EQUIPING CHEMISTRY STUDENTS MIND WITH A SYSTEMIC COMPONENT

# SYSTEMS THINKING & GC (27) 2

# **ASKS FOR MORE ATTENTION TO**

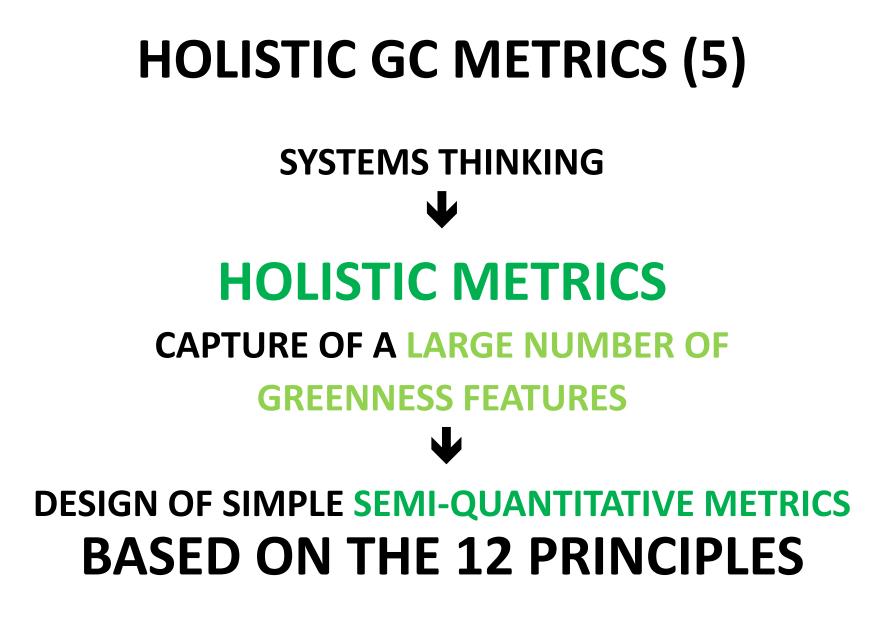
- INTERACTIONS AMONG THE VARIABLES OF GC
- IMPORTANCE OF MULTI-DIMENSIONAL CHOICES
- NEED OF TOOLS FOR MULTI-CRITERIA DECISIONS


# **HOLISTIC GC METRICS (1) COMPLEXITY OF GREENNESS ASSESSMENT IS DIFFICULT DIFFERENT METRICS USED ALONG** THE GREENNESS CHAIN SEVERAL TYPES IN VARIOUS CONTEXTS

### **HOLISTIC GC METRICS (2)**

GC TEACHING IN THE LABORATORY: METRICS TO BE USED BY STUDENTS?

#### 12 PRINCIPLES = DESIRABLE INFRASTRUCTURE FOR SELECTION OF METRICS FROM LITERATURE


#### COMPLEX NET OF CONNECTIONS FIG. 6



FOR IMPACT METRICS: INTERACTIONS: ARE COMPLEX

# **HOLISTIC GC METRICS (4)** SIMPLE & INTUITIVE MASS METRICS **E-FACTOR/ATOM ECONOMY/MASS INTENSITY** SUITABLE FOR EVALUATION OF CHEMISTRY: **REACTION EFFICIENCY & ATOM PRODUCTIVITY**

METRICS FOR ENVIRONMENTAL & TOXICITY IMPACTS: TOO COMPLEX FOR USE IN LAB



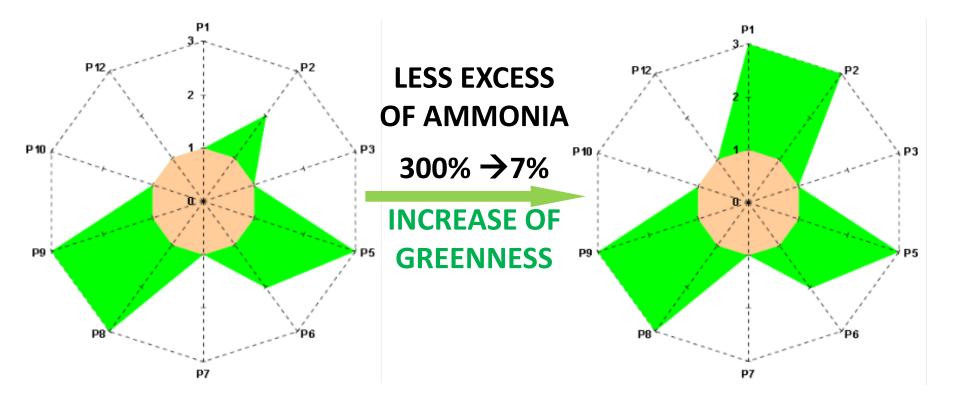
#### **HOLISTIC GC METRICS (6) GREENSTAR (GS)** 1 **EACH OF THE 12 PRINCIPLES: EVALUATION OF ACCOMPLISHMENT** (STANDARDIZED PROCEDURES - SCORE 1 TO 3) 2 SCORES REPRESENTED IN A RADAR CHART (STAR) NUMBER OF CORNERS = NUMBER OF PRINCIPLES ASSESSED 3 SIMPLE VISUAL INSPECTION: AREA OF THE STAR $\equiv$ SEMI-QUANTITATIVE VIEW OF THE GREENNESS

THE LARGER THE AREA, THE GREENER IS THE REACTION

## **HOLISTIC GC METRICS (7)**

CHANGE OF EXPERIMENTAL REACTION CONDITIONS

**GS CAPTURES EFFECTS ON EACH PRINCIPLE** 


### **COMPARISON OF GS'S BEFORE/ AFTER :**

PROGRESS IN GREENNESS

 IDENTIFICATION OF THE WORSE ITEMS FOR FURTHER IMPROVEMENT

## **HOLISTIC GC METRICS (8)**

#### **TETRAMMINE-COPPER(II) SULFATE MONOHYDRATE**



### **HOLISTIC GC METRICS (9)**

### **OTHER 2 HOLISTIC METRICS**

#### **UNDER EVALUATION**

### GREEN MATRIX (SWOT ANALYSIS)

GREEN CIRCLE

## **HOLISTIC GC METRICS (10)**

#### **GS USED EXTENSIVELY BY STUDENTS IN**

**A GC LABORATORY TEACHING PROCEDURE:** 

### **MORE ACTIVE PARTICIPATION IN**

PURSUING GREENNESS

LEARNING THE PURPOSE & PRACTICE OF GC

### **STRATEGY TO GC TEACHING IN LAB (1)**

## CHALLENGE TO THE STUDENTS: TO IMPROVE

### **SYNTHESIS PROTOCOLS**

IN TEXTBOOKS TO INCREASE GREENNESS

### **STRATEGY TO GC TEACHING IN LAB (2)**

ASSIGNMENT OF A COMPOUND/PROTOCOL

1

2

SYNTHESIS IN THE LABORATORY & GREENNESS EVALUATION (MASS METRICS + GS)

#### 3

ANALYSIS OF THE PROTOCOL FOR IMPROVEMENT BY CHANGING CONDITIONS

**TEMPERATURE/EXCESS OF REAGENTS/SOLVENTS, ETC.** 

4

NEW SYNTHESIS IN THE LABORATORY & ASSESSMENT OF THE GREENNESS IMPROVEMENT

### **STRATEGY TO GC TEACHING IN LAB (3)**

5

### REPETITION OF THE TASK: CORRECTION OF BAD CHOICES OF CONDITIONS OR FURTHER INCREMENT OF GREENNESS

### **STRATEGY TO GC TEACHING IN LAB (4)**

### RESULTS

### **VERY SIMPLE INORGANIC SYNTHESIS**

### TABLE 6

#### TABLE 6 RESULTS OF THE OPTIMIZATION OF PROTOCOLS OF SYNTHESES

| COMPOUND LIGAND/METAL    | <b>IMPROVEMENT OF THE GREENNESS</b>                           |
|--------------------------|---------------------------------------------------------------|
|                          | (GS, % OF MAXIMUM GREENNESS)                                  |
| AMMONIA                  |                                                               |
|                          | 27,5 <del>→</del> 40,00                                       |
| OXALATE                  |                                                               |
|                          | $20,00 \rightarrow 36,25 \rightarrow 41,25 \rightarrow 46,25$ |
| ACETYLACETON             | ATES                                                          |
| FE(III)ACAC <sub>3</sub> | 32,50 <del>→</del> 40,0                                       |
|                          | 41,25 → 51,25                                                 |
|                          | 30,0                                                          |
| Mn OR Mg                 | 22,50 <del>→</del> 30,0                                       |
| Са                       | 46,25 <del>→</del> 57,50                                      |
|                          | OXALATE<br>ACETYLACETONA                                      |

### **STRATEGY TO GC TEACHING IN LAB (6)**

## **MOST PROTOCOLS PRESCRIBE**

## LARGE EXCESS OF A REAGENT

## WHICH IS NOT NECESSARY!

### **STRATEGY TO GC TEACHING IN LAB (7)**

## **ADVANTAGES**

- REQUIRES CREATIVE THINKING ALONG PARALLEL LINES TO DEVISE IMPROVEMENTS
  - DEVELOPS THE CAPACITY FOR MAKING CHOICES/ASSUMING THE RESPONSIBILITY OF TAKING DECISIONS
    - STRESSES THAT GC REQUIRES A

SYSTEMS THINKING STRATEGY

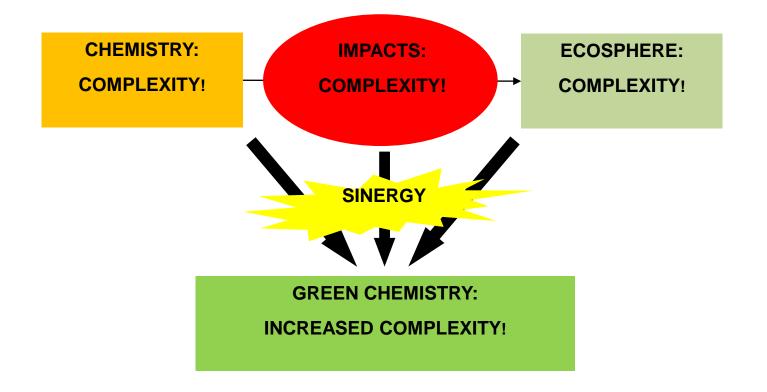
### **STRATEGY TO GC TEACHING IN LAB (8)**

## MAIN LIMITATION

# STUDENTS REQUIRE A LOT OF SUPPORT/SUPERVISION IN THE LABORATORY

LIMITED NUMBER OF STUDENTS (<6)

## **CONCLUSIONS (1)**


#### **CHEMISTRY IS INTRINSICALLY COMPLEX**

# GREENNESS IS STILL MORE COMPLEX

#### COMPLEXITY IS FURTHER INCREASED WHEN GREENNESS IS AIMED IN GREEN CHEMISTRY

## **CONCLUSIONS (2)**

#### SINERGY IN THE COMPLEXITY OF GREEN CHEMISTRY



### **CONCLUSIONS (3)**

#### **GC INVOLVES AN**

**EXTREMELY COMPLEX NET OF INTERACTIONS** 

### SIMPLE CAUSE-EFFECT RELATIONSHIPS (CARTESIAN REDUCTIONISM) PROVIDE NO GOOD DESCRIPTION OF SITUATIONS WITH LARGER NUMBERS OF INTERCONNECTIONS

## **CONCLUSIONS (4)**

### HOLISTIC MINDSET: SYSTEMS THINKING TO DEAL WITH INTERCONNECTIONS TO...

ANALYZE THEIR RELATIVE STRENGTH &

**IMPORTANCE IN EACH SITUATION** 

- ELIMINATE THE DANGEROUS CONNECTIONS
  - BALANCE CONFLICTING OUTCOMES

## **CONCLUSIONS (5)**

### IMPORTANT TO DEVELOP

### THE SYSTEMS THINKING

### **CAPACITIES OF CHEMISTRY STUDENTS**

#### NOT AN EASY TASK

THIS WORK: ONLY A VERY PRELIMINARY EFFORT!

### ACKNOWLEDGMENTS

**PROF. M. GABRIELA RIBEIRO** 

PhD (CONCLUDED): DOMINIQUE COSTA

PhD (IN PROGRESS, PART TIME): RITA DUARTE & CLÁUDIA SANTOS

PHD (STARTING, PART TIME): TÂNIA PIRES & RICARDO PINTO