

Extração do R-(+)-limoneno a partir das cascas de laranja:

avaliação e otimização da verdura dos processos de extração tradicionais

TÂNIA C. M. PIRES^{1,2}, M. G. T. C. RIBEIRO^{1,2}, A. A. S. C. MACHADO²

¹LAQV/REQUIMTE

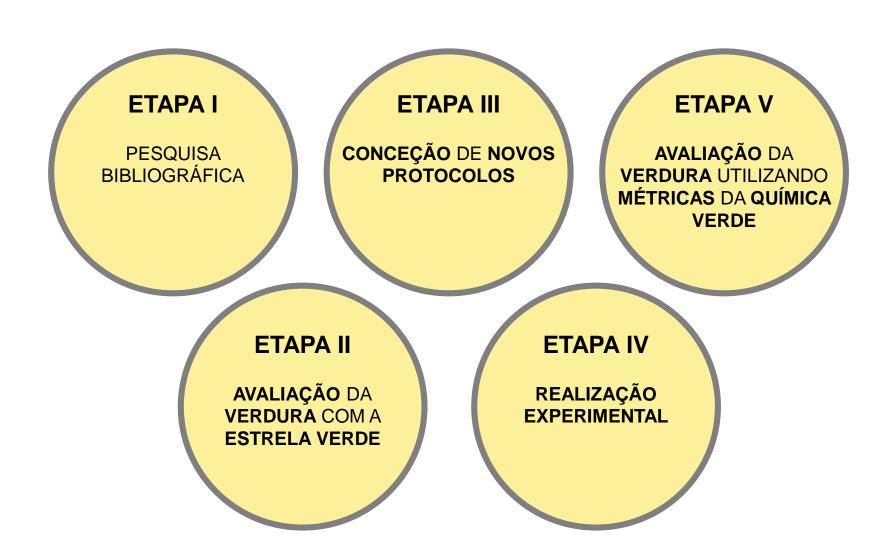
²Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto

Objetivos

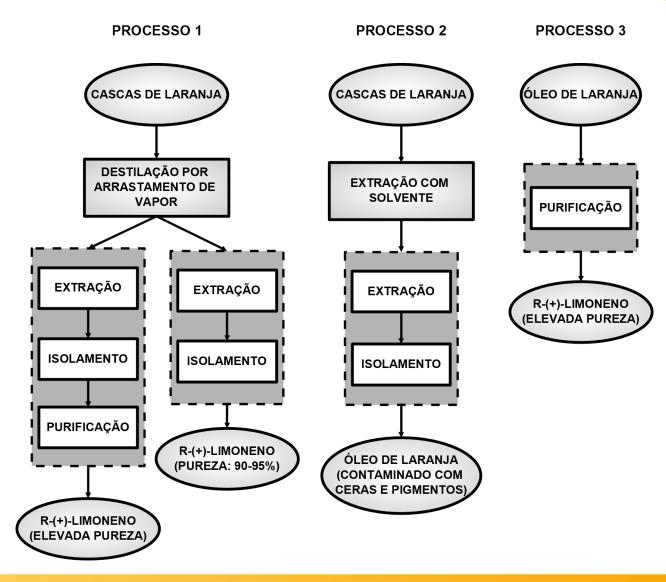
INVESTIGAR A VERDURA DOS PROCESSOS VIGENTES DE EXTRAÇÃO DO ÓLEO DE LARANJA

V

PROMOVER A INTRODUÇÃO DA QUÍMICA VERDE (QV)
NOS LABORATÓRIOS DE ENSINO


AVALIAR A VERDURA QUÍMICA
DE DIFERENTES
PROTOCOLOS PUBLICADOS

PROCESSOS MAIS VERDES

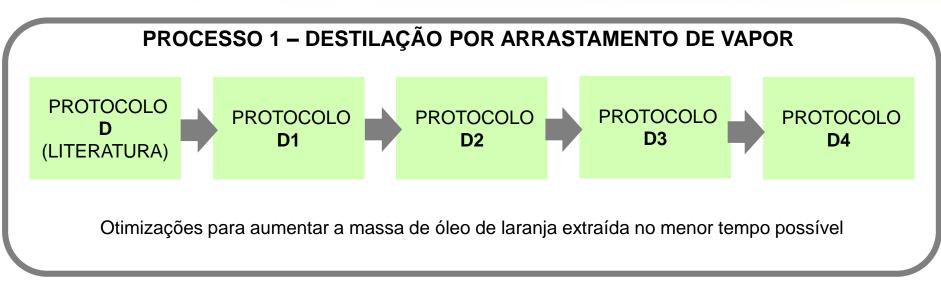

OTIMIZAÇÃO ATRAVÉS DO USO DE MÉTRICAS

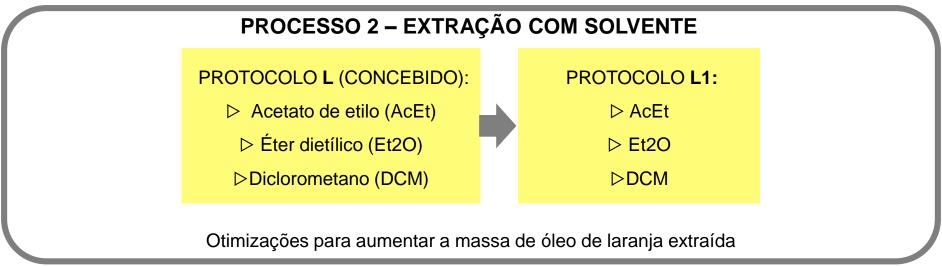
AVALIAÇÃO MULTIDIMENSIONAL DA VERDURA

Metodologia

Metodologia

Seleção de protocolos


MÉTRICA GLOBAL ESTRELA VERDE


Destilação por	Extração com solvente (protocolo L)				
arrastamento de vapor (protocolo D)	Diclorometano	Acetato de etilo	Éter dietílico		
P1 P12 P5 P10 P7	P1 P12 P10 P10 P6	P12 P5 P6 P7	P1 P12 P5 P10 P6		
IPE = 58,33	IPE = 8,33	IPE = 25,00	IPE = 25,00		

A avaliação de todos os protocolos está disponível em:

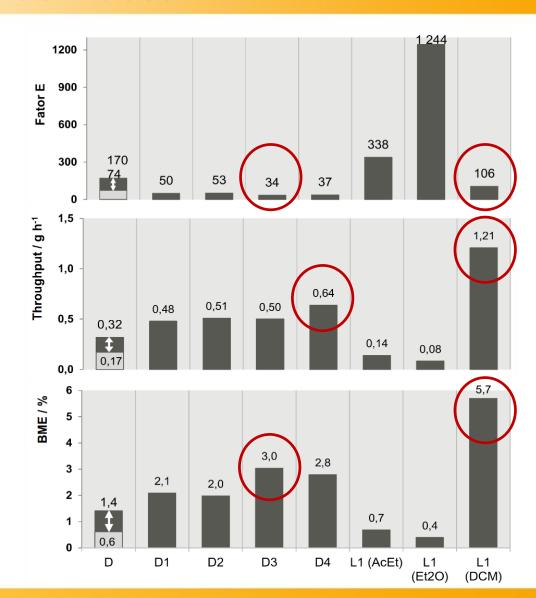
http://educa.fc.up.pt/catalogo/pt/separacoes/1

Trabalho experimental

Resultados – Métricas de Massa

FATOR E

Fator ambiental

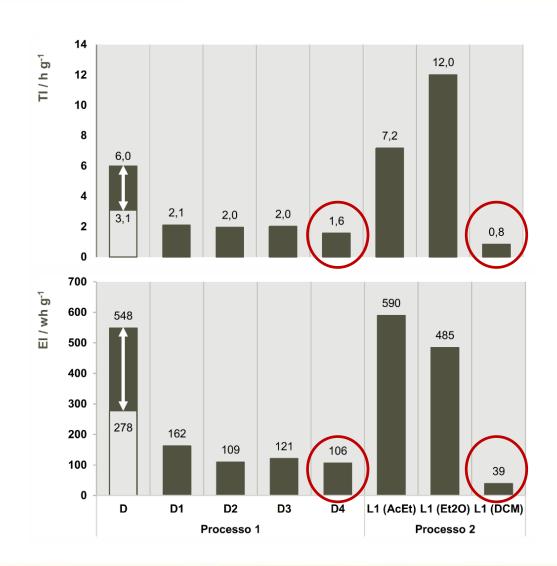

massa resíduos massa de óleo de laranja

Throughput

massa de óleo de laranja tempo total

BMEEficiência material de biomassa

 $\frac{\text{massa de óleo de laranja}}{\text{massa de casca de laranja}} \times 100$


Resultados – Métricas de Tempo e Energia

TIIntensidade de Tempo

Tempo massa de produto

EI Intensidade de Energia

Energia massa de produto

EXTRAÇÃO DO R-(+)-LIMONENO A PARTIR DAS CASCAS DE LARANJA: AVALIAÇÃO E OTIMIZAÇÃO DA VERDURA DOS PROCESSOS DE EXTRAÇÃO TRADICIONAIS

IV Encontro em Ensino e Divulgação das Ciências

Resultados – Comparação dos processos de extração

Processo	Protocolo	EV (IPE)	Métricas				
			Fator E	ВМЕ	EI	TI	Throughput
P1	D1	58,33	50	2,1	162	2,1	0,48
	D2		53	2,0	110	2,0	0,51
	D3		34	3,0	121	2,0	0,50
	D4		37	2,8	106	1,6	0,64
P2	L1(AcEt)	25,00	338	0,7	590	7,2	0,14
	L1(Et ₂ O)	25,00	1244	0,4	485	12,0	0,08
	L1(DCM)	8,33	106	5,7	39	0,8	1,21
P3	K	50,00	0,27	-	123	0,29	2,7

PROCESSO DE DESTILAÇÃO POR ARRASTAMENTO DE VAPOR - PROTOCOLO D4:

- ► 2 MELHOR VALOR PARA O FATOR E
- ▶② OUTRAS MÉTRICAS DE MASSA, TEMPO E ENERGIA COM VALORES INFERIORES
- ▶☑ MELHOR IPE NA AVALIAÇÃO COM A MÉTRICA HOLISTICA ESTRELA VERDE (PROCESSO QUE NÃO REQUER SOLVENTES PERIGOSOS)

EXTRAÇÃO DO R-(+)-LIMONENO A PARTIR DAS CASCAS DE LARANJA: AVALIAÇÃO E OTIMIZAÇÃO DA VERDURA DOS PROCESSOS DE EXTRAÇÃO TRADICIONAIS

IV Encontro em Ensino e Divulgação das Ciências

Resultados – Comparação dos processos de extração

Processo	Protocolo	EV	Métricas				
		(IPE)	Fator E	вме	EI	TI	Throughput
P1	D1	58,33	50	2,1	162	2,1	0,48
	D2		53	2,0	110	2,0	0,51
	D3		34	3,0	121	2,0	0,50
	D4		37	2,8	106	1,6	0,64
P2	L1(AcEt)	25,00	338	0,7	590	7,2	0,14
	L1(Et ₂ O)	25,00	1244	0,4	485	12,0	0,08
	L1(DCM)	8,33	106	5,7	39	0,8	1,21
P3	K	50,00	0,27	-	123	0,29	2,7

PROCESSO DE EXTRAÇÃO COM SOLVENTE - PROTOCOLO L1 (DCM):

- ▶2 MELHORES VALORES PARA AS MÉTRICAS (EXCETO FATOR E)
- ▶☑ USA DICLOROMETANO, SOLVENTE COM ELEVADO PERIGO PARA SAÚDE HUMANA
- → RESÍDUOS PERIGOSOS
- ▶2 ÓLEO OBTIDO COM PIOR QUALIDADE

Conclusões

- DESTILAÇÃO POR ARRASTAMENTO DE VAPOR ►□ PROCESSO MAIS
 VERDE ►□ MENOR RISCO NO MANUSEAMENTO DE SUBSTÂNCIAS E MENOR FATOR E
- DIFERENTES MÉTRICAS DE VERDURA ►□ RESULTADOS
 CONTRADITÓRIOS ►□ COMPLEXIDADE DO CONCEITO DE VERDURA
 QUÍMICA E DIFICULDADE EM CONCRETIZAR QV ►□ VISÃO GLOBAL E
 REALISTA
- METODOLOGIA ADOTADA ►□ BASE PARA CONCEÇÃO DE OUTRAS
 ATIVIDADES LABORATORIAIS ►□ APROFUNDAR CONCEITO DE
 VERDURA QUÍMICA

Pires, T. C. M., Ribeiro, M. G. T. C., Machado, A. A. S. C. (2018). Quim. Nova, 41(3), 355-365